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Abstract

In this essay, the basic ideas behind a superluminal propulsion system,
which is based on directed spacetime distortions and, therefore, is called
“warp drive”, are introduced. Using the 3+1 formalism, the Alcubierre
metric tensor is derived, which satisfies the aspired properties of a warp
drive. From an exemplary trip to alpha centauri, it becomes clear that
the warp drive causes serious problems, which are discussed in the last
part of the essay.

The essay and some additional material is provided online:
http://www.fiedlschuster.eu/c/physics/warpdrive/
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Additional ressources are provided on the enclosed CD ROM.

1. The essay as a PDF.

2. The bibliography as a PDF, including the hyperlinks to the quoted articles.

3. The quoted articles as PDF.

4. Mathematica scripts.



Sebastian Fiedlschuster, Warp Drive Theory

Introduction Page 4

2 Introduction

Ever since mankind has realised that the stars that appear at the night sky are
distant suns like ours, somehow naturally the desire sprouts to travel there.

But it would take 160 thousand years for a typical NASA space shuttle to reach
only our nearest neighbour star Proxima Centauri and about 4 · 109 years to
cross the galaxy.

Physically we are limited to subluminal speed within special relativity, because
it would take an infinite amount of energy only to reach the speed of light.

To overcome this flaw, science fiction has come up with the idea of a warp
drive or a hyper drive — some kind of drive that circumvents the usual sense
of velocity.

The purpose of Miguel Alcubierre’s article The warp drive: hyper-fast travel
within general relativity [1] was to show that it is possible within the framework
of general relativity for a starship to travel with superluminal speed.

This essay purposes to introduce the ideas of this “warp drive” and to discuss
some of its major problems, as inter alia shown by Van Den Broeck, Coule and
Pfenning. (See section 8.)

But despite all occuring problems, there is no known physical obstacle that
prohibits the principal idea of a warp drive. So we still can hope that some day
we will be able to travel to the stars of our night sky.

References

[1] Miguel Alcubierre. The warp drive: hyper-fast travel within general relativ-
ity. Classical and Quantum Gravity, 11:L73, 1994. http://arxiv.org/abs/
gr-qc/0009013.

[2] Wikipedia (de). Space Shuttle. http://de.wikipedia.org/wiki/Space_
Shuttle.

http://arxiv.org/abs/gr-qc/0009013
http://arxiv.org/abs/gr-qc/0009013
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3 The Possibility of Superluminal Velocity

IOK-1 Galaxy

Location of the Galaxy in the Coma
Berenices constellation. [2]

The red dot is the galaxy. [1]

Right ascension 13h 23m 59.8s
Declination +27◦ 24′ 56′′

Redshift 6.96
Distance 12.88 GLy
[4]

For distant galaxies we observe cosmological redshifts z :>
1, which correspond to velocities greater than the speed
of light. This observation can be interpreted like this that
these galaxies move away from us with velocities greater
than the speed of light.

Since special relativity states that nothing can travel
faster than light, this should be confusing. But this ve-
locity does not occur from the movement of the galaxy
within space, but from the expansion of space itself. This
is a rather vague description. What else should space be
than the distribution of massive objects (within it)? But
somehow the geometry (which is the property that deter-
mines what a distance is) of space and time is such that
the distance between two objects increases as time pro-
gresses, at least on cosmological length scales.

The Fizeau-Doppler formula

1 + z =

√
1 + v

c

1− v
c

≈ 1 +
v

c
(1)

connects the redshift z with the escape speed v. c de-
notes the speed of light. The very right hand side of
the equation shows the Taylor approximation for the non-
relativistic case. We do not consider the relativistic for-
mula because the movement is no movement within local
(special-relativistic) space, and thus, the objects locally,
where the Lorentz transformations would apply, move
only with velocities v � c. Thus, the escape velocity
v for cosmological redshifts z is simply

v = z · c . (2)

The galaxy IOK-1 has a measured redshift of z = 6.96,
which means an escape velocity of IOK-1 relative to earth
that is clealy greater than the speed c of light.

And, to point it out again, this velocity is not a velocity within space but arises
from the expansion of space itself.

Similar to this, we can think of a region of curved space around an object
like a starship in a way that space in front of the starship is contracted and
space behind the starship is expanded such that the starship appearently moves
forward, as shown in the next section.

References

[1] National Astronomical Observatory of Japan. Cosmic archeology un-
covers the universe’s dark ages. http://www.subarutelescope.org/
Pressrelease/2006/09/13/index.html, September 2006.

http://www.subarutelescope.org/Pressrelease/2006/09/13/index.html
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[2] The Stellarium Project. http://www.stellarium.org/.

[3] Wikipedia (en). Cosmological redshift. http://en.wikipedia.org/wiki/
Cosmological_redshift.

[4] Wikipedia (en). IOK-1. http://en.wikipedia.org/wiki/IOK-1.
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4 The Idea Behind the Warp Drive

Now, as we have seen that the universe appearently allowes superluminal veloc-
ities, at least non-locally, by curving space itself, we aim to use this possibility
to drive a starship with theoretically arbitrary high speed.

The idea of superluminal speed space travel lies in contracting space in front of
the starship, and expanding space behind the starship, such that, for observers
outside the disturbed region of space, the starship is travelling with superlumi-
nar velocity. [1, p. 1]

Figure 1: Idea behind the warp drive: Contract the space in front of the starship,
expand the space behind it. Thus, the starship moves forward.

The telling name “warp drive” has been introduced in 1966 [2] in the television
series Star Trek. Alcubierre adopts the same name into science when he says “A
propulsion mechanism based on such a local distortion of spacetime just begs
to begiven the familiar name of the ’warp drive’ of science fiction.” [1, p. 8].

Of course, one wants to affect only the starship and its immediate surrounding
area with the warp drive, but not the space in a larger distance from the starship.
For that reason, one aims to design a kind of distortion bubble around the
starship, which will be called “warp bubble”.

References

[1] Miguel Alcubierre. The warp drive: hyper-fast travel within general relativ-
ity. Classical and Quantum Gravity, 11:L73, 1994. http://arxiv.org/abs/
gr-qc/0009013.

[2] Startrek.com. Star Trek Episodes. http://www.startrek.com/startrek/
view/series/TOS/episodes/index.html.

http://arxiv.org/abs/gr-qc/0009013
http://arxiv.org/abs/gr-qc/0009013
http://www.startrek.com/startrek/view/series/TOS/episodes/index.html
http://www.startrek.com/startrek/view/series/TOS/episodes/index.html


Sebastian Fiedlschuster, Warp Drive Theory

Designing a Warp Bubble Page 8

5 Designing a Warp Bubble

Contents
5.1 Aspired Properties of a Warp Bubble . . . . . . . 8

5.2 How to Describe the Distortion . . . . . . . . . . . 10

5.3 Foliation of Spacetime . . . . . . . . . . . . . . . . 11

5.4 The Metric of a Warp Bubble . . . . . . . . . . . . 17

5.1 Aspired Properties of a Warp Bubble

For the purpose of clarification, let us introduce a kind of coordinate system with
three spatial and one temporal coordinates. We want the starship to travel along
the x-axis.

The starship is located at the position (xs(t), ys(t), zs(t)), where t is the coor-
dinate time parameter. But, since the starship is traveling along the x-axis,
we feel free to set ys(t) = zs(t) = 0 ∀t. Thus, the velocity of the starship is
vs = ∂xs(t)

∂t .

The distance of some spatial point x := (x, y, z) from the starship’s centre shall
be denoted as rs(x):

rs(x) =
√

(x− xs)2 + y2 + z2 (3)

Figure 2: The used coordinate system: The starship moves along the x-axis. R
is the radius of the warp bubble.

5.1.1 Making the Ship Move

The primary goal of the warp drive is, of course, to make the starship travel.
That means, from the perspective of an outside observer, the starship should
move in space as time passes.
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But to move must not mean to be translated inside the local region of space
around the starship, but to affect space around the starship in a way that moves
the whole region of space in relation to the outside space (where the observer is
located) in a larger distance from the starship.

Figure 3: The warp bubble with the ship inside moves forward from the per-
spective of an observer in certain distance from the warp bubble. [2]

The region of space that is moved in relation to an outside observer, we refer to
as “inside the warp bubble”.

The term warp bubble itself refers to the curved region of space surrounding
the starship to be moved using the warp drive.

5.1.2 The Radius of the Warp Bubble

The radius of the warp bubble to be designed shall be denoted as R. By defining
a radius, we intend to specify a region where the spatial distortion, i. e. the
contraction and expansion, takes place.

The distortion of space shall be confined to a region of the width 2 ε around the
radius of the warp bubble:

distortions allowed ∀x : rs(x) ∈ [R− ε;R+ ε]

5.1.3 Normal Space Inside the Warp Bubble

Inside the warp bubble (i. e. ∀x : rs(x) < R − ε), there should be “normal
spacetime”. That means there should be neither spatial nor temporal distortions,
but just the usual Minkowski space.

Otherwise the tidal forces may destroy the starship, or temporal effects — like
time passing faster in one part of the starship than in another part — would
make life on the starship more difficult.
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5.1.4 Temporal Synchronism Inside and Outside

One prominent problem of high speeds consists in time dilation effects (“Moving
clocks run slow”) and the resulting practical problems like seeing the outside
world growing old too fast.

Of course, a hypothetical warp drive should avoid these problems. So, ideally,
time should pass synchronously inside and outside of the warp bubble.

References

[1] Miguel Alcubierre. The warp drive: hyper-fast travel within general relativ-
ity. Classical and Quantum Gravity, 11:L73, 1994. http://arxiv.org/abs/
gr-qc/0009013.

[2] Wikipedia (de). Datei:Star Trek Warp Field.png. http://de.
wikipedia.org/w/index.php?title=Datei:Star_Trek_Warp_Field.
png&filetimestamp=20080823041034.

5.2 How to Describe the Distortion

In general relativity, as in differential geometry, one can describe the curvature
properties of the spacetime manifold M using the metric tensor gµν(x) which
is defined for all x ∈M.

From this, one can find the other relevant quantities like the line element ds,
which gives the distance of two infinitesimally near events x,x + dx on the
manifold1.

ds2 = gµν(x) dxµ dxν

Given the metric tensor gµν(x), one can find the Christoffel symbols Γκµν(x)
[2, p. 66]

Γκµν =
1
2
gκρ (∂µgνρ + ∂νgµρ − ∂ρgµν)

and consequently the Riemann-Christoffel curvature tensor Rdabc, which
is a measure for the intrinsic curvature2 of a manifold [2, p. 158].

Rdabc = ∂bΓdac − ∂cΓdab + ΓeacΓ
d
eb − ΓeabΓ

d
ec

Furthermore, provided the curvature in terms of the curvature tensor Rdabc,
we can use Einstein’s equations [2, p. 183] to gain the source of the space-
time distortion, i. e. the matter or energy distribution (given by the energy-
momentum tensor Tµν) we have to create to generate the warp bubble.

Rµν −
1
2
gµνR = −kTµν

1 Please note: Bold face symbols (like x) refer to vectors. This includes elements of
higher-dimensional manifolds. In the case of spacetime, the vector is a four-vector. Thus, the
bold notation and the index notations are to be regarded as equivalent: x ≡ (xµ)µ ≡ xµ,

µ ∈ {0, 1, 2, 3}.
2 The intrinsic curvature of a manifold is the curvature that can be detected by the

“inhabitants” of this manifold. Contrarily, the extrinsic curvature can only be detected by
those who have access to the embedding manifold the curved manifold is embedded in. For
illustrating examples, see [1, p. 25 ff.].

http://arxiv.org/abs/gr-qc/0009013
http://arxiv.org/abs/gr-qc/0009013
http://de.wikipedia.org/w/index.php?title=Datei:Star_Trek_Warp_Field.png&filetimestamp=20080823041034
http://de.wikipedia.org/w/index.php?title=Datei:Star_Trek_Warp_Field.png&filetimestamp=20080823041034
http://de.wikipedia.org/w/index.php?title=Datei:Star_Trek_Warp_Field.png&filetimestamp=20080823041034
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In the above equation, Rµν := Rρµνρ is the Ricci tensor [2, p. 162], R := gµνRµν
the Ricci scalar, and k some constant, containing the speed of light c and the
gravitational constant G: k = 8πG/c4.

If the metric tensor gµν that corresponds to the warp bubble we aim for is
provided, we can calculate the ohter quantities of interest. Therefore, we will
now begin to look for the metric tensor.

For our description of spacetime, we will use the so-called 3+1 formalism
which describes spacetime as a foliation of spacelike hypersurfaces.

References

[1] Éric Gourgoulhon. 3+1 formalism and bases of numerical relativity. http:
//arxiv.org/abs/gr-qc/0703035, March 2007.

[2] A. N. Lasenby M. P. Hobson, G. Efstathiou. General Relativity. An Intro-
duction for Physicists. Cambridge University Press, 2009.

5.3 Foliation of Spacetime

Since we want to compose a propulsion system, which uses deformations in space
rather than in time, it is convenient to separate space and time and describe
spacetime in a way of foliation where leaves or slices are spacelike hypersurfaces
of constant time.

Figure 4: Foliation of the spacetime M by a family (Σt)t∈R of spacelike hyper-
surfaces Σt of constant coordinate time t with normal vector n. [3, p. 40]

This so called 3+1 Formalism is a general approach to general relativity that
relies on the slicing of the four-dimensional spacetime by three-dimensional hy-
persurfaces. [3, p. 11]

http://arxiv.org/abs/gr-qc/0703035
http://arxiv.org/abs/gr-qc/0703035
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5.3.1 Spacetime and Its Leaves

We describe the spacetime as a 4-dimensional, real, smooth manifold M with
a Lorentzian metric tensor g with a signature of (−,+,+,+).

Now we foliate the spacetime manifold by a continous set (Σt)t∈R of hypersur-
faces Σt, that covers the manifold M.

M =
⋃
t∈R

Σt

The hypersurfaces are defined as sets of spacetime points with constant coordi-
nate time3 t.

Σt : ∀p ∈M ( p ∈ Σ ⇔ t(p) = t )

More precisely, we should say that foliation means that there has to exist a
smooth scalar field t̂ on M which is regular (i. e. its gradient never vanishes)
and allows us to define the hypersurfaces Σt as level surfaces of this scalar field:

∀t ∈ R Σt =
{
p ∈M : t̂(p) = t

}
But we won’t distinguish between t and t̂. However, we do note that the hyper-
surfaces never intersect.

Σt ∩ Σt′ = {} for t 6= t′

Moreover, the slices have to be Cauchy surfaces, i. e. each causal curve (timelike
or null) without endpoint intersects each slice Σ once and only once. [3, p. 39]

5.3.2 The Unit Normal Vector

The normal vector n for a point p ∈M is defined to be orthogonal to the slice
Σt the point p lies in. It can be constructed by using the gradient ∇ of the
coordinate time t.

n = λ ∇t (4)

∇ is the affine connection associated with the metric g of the space time manifold
M. Therefore it is called spacetime connection. [3, p. 16]

λ is just a scaling parameter, because we haven’t said anything about the length
of the normal vector, yet. We take λ such that n is normalised to a length of 1.
Therefore we can call n the unit normal vector.

n = ± ∇t

‖∇t‖
= ± 1√

−∇t ·∇t
∇t (5)

We need the minus sign in the discriminant because the scalar product ∇t ·∇t
is negative since ∇t is a timelike vector and the signature of g is (−,+,+,+).

3 The so-called coordinate time t is the time coordinate we defined for the spacetime
manifold M. How it is related to the proper time τ between two events from the perspective
of an observer being at these events, we will show in section 5.3.3.



Sebastian Fiedlschuster, Warp Drive Theory

Designing a Warp Bubble Page 13

Note that for the same reason, n · n = −1, since the considered hypersurfaces
Σt are spacelike4.

Note furthermore that we would like to choose n to be the future-directed
normal vector if t increases towards the future. But since ∇t is directed into
the past (because ∇t is timelike and we get a minus sign from the metric g), we
have to take the minus sign in front of the fraction.

n = − 1√
−∇t ·∇t

∇t (6)

5.3.3 The Lapse Function

The normalisation factor of the normal vector n in equation (6) (except for the
minus sign we used to make n future directed) is called the lapse function5

α. [3, p. 41]
n = −α∇t, α = (−∇t ·∇t)−1/2 > 0 (7)

The hypersurface Σt+δt can be obtained6 from the neighbouring slice Σt by
the small displacement δt αn. Therefore, the vector αn is called the normal
evolution vector [3, p. 42].

Figure 5: The normal evolution vector m := αn [3, p. 41]

To make it precise, let p be a point in one slice Σt and p′ (spatially) the same
point, only a time interval δt later. Then these two points are connected by the
small displacement δt αn.

p′ = p+ δt αn (8)

p ∈ Σt, p′ ∈ Σt+δt, t(p′) = t(p) + δt

So, somehow α states how “dense” the leaves are layed on top of one another.

To make this precise, we follow the path P layed out by the displacements. This
path defines the worldline of the observer whose worldline is orthogonal to space
leaves Σt, the so-called Eulerian observer [3, p. 42].

4 Σt : spacelike ⇔ n : timelike
5 In the ADM formalism [2] and in 3+1 Formalism and Bases of Numerical Relativity [3],

the lapse function is denoted as N : N ≡ α. We stick to α because Alcubierre does in his
paper [1].

6 Proof: p′ = p+ δp, δt = δp∇t, n = −α∇t
⇒ δt = ∇t δp ⇒ −α δt = −α∇t| {z }

n

δp ⇒ −α δtn = − nn|{z}
−1

δp = δp
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The interval δτ of proper time generally is given by

δτ =
√
−gµν dxµ dxν

Since we are following the worldline P , the displacement is dx = dp ≡ δp.

δτ =
√
−δpµ δpµ =

√
−(δt α)2 nµ n

µ︸ ︷︷ ︸
−1

= α δt .

δτ = α δt (9)

Thus, the lapse function α determines the interval of proper time between nearby
hypersurfaces as measured by the Eulerian observers [1, p. 3]. This is the reason
for its name: it determines the lapse of time.

Note that α is a local quantity, i. e. α = α(p), p ∈ M. That means that α
may stretch or contract time locally. For the warp drive, we wish to accomplish
exactly the same thing for space instead of time. The quantity characterising
this is the shift vector.

5.3.4 The Shift Vector

As the lapse function α contracts or stretches time, the shift vector we are going
to introduce now contracts or stretches space locally.

The shift vector has got this name because it shifts the coordinates xi of a point
p ∈ Σt when transiting to the next slice Σt+δt.

During the last section, when we performed this transition by a small displace-
ment δp := αn δt, we have assumed that the lines of constant spatial coordinates
(
{
p ∈M : xi(p) := K(some constant)

}
) are orthogonal to the hypersurfaces Σt.

Therefore, the time-displaced point had the same coordinates in Σt+δt as in Σt.

Now, we generalise this and allow that the coordinates of a point p ∈ M may
be locally shifted in space by the shift vector β as the coordinate time t varies.

β :
∂

∂t
p = (αn+ β), β0 = 0 (10)

Figure 6: Time evolution: The lapse function α determines the lapse of time.
The shift vector β may shift the spatial coordinates. [4]

This generalises the displacement equation (8) to be

p′ = p+ (αn+ β)δt , (11)
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or equivalently in tensor notation

p′µ = pµ + δt(αnµ + βµ) .

Considering the shift vector, the interval dτ of proper time becomes

dτ =
√
−dpµ dpµ = δt

√
(αn+ β)2 .

Note that we have found a way to shift space locally, which will be the core of
the warp drive, we are going to look for the metric tensor that incorporates the
lapse function and the shift vector.

5.3.5 The metric tensor

In the 3+1 formalism, hypersurfaces Σt with a metric tensor γµν are embedded
into the spacetime manifold M with the metric tensor gµν .

We do know the metric tensor γµν of the slices Σt to satisfy 7

γij = δij , (12)

because, as we will see, we demand the slices to be intrinsically flat [1, p. 5].

So, we have to find a relation between both metric tensors, γµν and gµν , in order
to obtain the spacetime manifold’s metric gµν , which was our aim in order to
calculate other quantities of interest (cf. section 5.2).

Since we already know the normal vectors n for each slice Σt, we can use an
orthogonal projection operator to relate the metric tensors.

The orthogonal projection operator P for a hypersurface Σt, projects some
vector v ∈ M into the hypersurface Σt that corresponds to the projection
operator. (See figure 7 on page 16.)

P : v 7→ v + (n · v)n (13)

For the projection, v firstly is projected along the normal vector n. Note that
the scalar product (n · v) produces a minus sign, since n is timelike and the
metric’s signature is (−,+,+,+). Therefore, the vector (n · v)n points in the
opposite direction as one might think at first.

Next, the vector along n is added to the original vector, such that the resulting
vector Pv lies in the hypersurface Σt.

Pv = v + (n · v)n

In tensor notation, this becomes

Pµνv
ν = vµ + nµnνv

ν

= (δµν + nµnν) vν

7 Summation indices: i, j, k ∈ {1, 2, 3}, µ, ν, κ ∈ {0, 1, 2, 3}.
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Figure 7: Projection operator: The vector v from the manifold M is projected
into the hypersurface Σt. The projected vector is v + (n · v)n.

or, without the vector vν ,
Pµν = δµν + nµnν

We now use this projection operator to project8 the metric tensor gµν of the
manifold M into the hypersurface Σt.

Pµν gρµ = δµν gρν + nµnν gρν

Summation over the index µ gives the projected metric tensor γρν , which is the
metric tensor of the hypersurface Σt.

γρν = Pµν gρµ = gρν + nρnν

Changing the summation index ρ to µ gives the relation between the metric
tensors.

gµν = γµν − nµ nν (14)

Now we have a way to calculate the metric tensor gµν of the spacetime manifold
M. Setting in the quantities on the right hand side (nµ = (−α, 0, 0, 0) [3,
eqn. 4.38]), we obtain the metric tensor gµν .

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =
(
g00 g0j
gi0 gij

)
=
(
−α2 0

0 γij

)

But note that we haven’t taken into account the shift vector β so far. Consid-
ering the shift vector, the metric tensor becomes [3, p. 58]

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =
(
g00 g0j
gi0 gij

)
=
(
−α2 + βkβ

k βj
βi γij

)
(15)

Now that we have the general form of a metric tensor in foliated spacetime, we
can look for the metric tensor that describes the warp bubble we want to design.

8 This is a slightly simplified formulation. To be mathematical exact, we would first have
to extend the projection operator to work for dual vectors instead of vectors. For details,
see [3, p. 29].
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5.4 The Metric of a Warp Bubble

5.4.1 The Metric Tensor in Foliated Spacetime

As we have seen, the metric tensor gµν of the spacetime manifold M can be
written in terms of the parameters we used within the foliation description of
spacetime. (µ, ν ∈ {0, 1, 2, 3}, i, j ∈ {1, 2, 3}.)

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =
(
g00 g0j
gi0 gij

)
=
(
−α2 + βkβ

k βj
βi γij

)

α is the lapse function (equation (7)), βi is the shift vector (equation (10)) and
γij is the metric tensor of the hypersurfaces (equation (12)).

5.4.2 Finding the Correct Parameters

Now that we have the general form of the metric tensor gµν , we have to find
the right parameters α and βi that characterise the curvature of spacetime and
result in the aspired properties of the warp bubble we aim to design (cf. section
5.1 and equations (2) to (5) in [1] and note9 that c = G = 1).

9 c denotes the speed of light, G the gravitational constant. We will reintroduce these
quantities, when we calculate the required energy in section 7.

http://arxiv.org/abs/gr-qc/0009013
http://arxiv.org/abs/gr-qc/0009013
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http://en.wikipedia.org/wiki/ADM_formalism
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http://jean-luc.aei.mpg.de/Glossary/F/3+1-Formalism/
http://jean-luc.aei.mpg.de/Glossary/F/3+1-Formalism/
http://www.geogebra.org/cms/en
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Metric The distortion effect, i. e. the shift of a certain region of space, shall
only occure as time varies. Therefore, if we consider one single slice, one should
not see any distortion.

Thus, in order to make the 3-geometry of each slice flat, we set the local spatial
metric to be one on the diagonal [1, p. 5].

γij = δij (16)

(i, j ∈ {1, 2, 3}, δij is the Kronecker delta.)

Lapse function We do not aim to stretch time somehow. So we can leave
the slices in a “constant distance”, in other words: set the lapse function to be
1.

α = 1 (17)

Furthermore, this results in the effect that Euclidean observers are in free fall
(because the timelike curves normal to the hypersurfaces are geodesics for α = 1
[1, p. 5]).

This does not mean that the whole spacetime is flat. Indeed, this would be
contradictory to the spatial shift we want to achieve. But since the spatial shift
should be confined to the warp bubble, the rest of spacetime will be essentially
flat. [1, p. 5].

Shift vector orthogonal to the direction of motion We don’t need the
space shifted in the direction orthogonal to the direction in which we want our
starship to travel. Therefore, we can set their shift vector components to be
zero.

βy = βz = 0 (18)

Shift vector in the direction of motion We want to travel our starship
along the spatial x-axis as it moves through time. Thus, we have to create a
curvature, such that the spacetime slices will be shifted along the x-axis.

βx = βx(t)

As we want to stipulate the velocity vs(t) := dxs(t)/dt of our starship, we design
a shift that is linear to the ship’s velocity [1, eqn. 3].

βx = −vs(t) f(rs(t)) (19)

rs(t) denotes the distance between some space point (x, y, z) and our starship,
which is located at the position (xs, ys, zs) := (xs(t), 0, 0). (See equation (3).)

rs(t) =
√

(x− xs(t))2 + y2 + z2

The function f(rs(t)) confines the shift to the spatial region around our starship
we refer to as the warp bubble with radius R.
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Ideally, the space within the radius R should be x-shifted, resulting in the
starship’s velocity vx. Space outside the warp bubble with radius R should not
be curved.

βx = −vs(t) f̂(rs(t)), f̂(rs) :=

{
1, rs ∈ [−R,R]
0, rs > R

But such an abrupt transition would be rather unphysical. Thus, we define f
to be smooth, but to approach f̂ far away from the warp bubble.

βx = −vs(t) f(rs(t)), f(rs) :=
tanh(σ(rs +R))− tanh(σ(rs −R))

2 tanh(σR)
(20)

(a) Function f(rs) for different parameters
σ ∈ {1, 2, 3, . . . , 10}.

(b) Function f̂(rs) which is the limit of
f(rs) for σ →∞.

Figure 8: The functions f, f̂ limiting the shift function to a certain region of
space, the so-called warp bubble.

5.4.3 The Resulting Metric Tensor

Using these parameters we achieved from the required properties of the warp
bubble (cf. [1, p. 4]),

lapse function α = 1
shift vector βx = −vs(t) f(rs(t))

βy, βz = 0
spatial metric γij = δij

we receive the following expression for the metric tensor gµν(x).

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 =
(
g00 g0j
gi0 gij

)
=
(
−α2 + βkβ

k βj
βi γij

)

=


−1 + (vs(t) f(rs(t)))2 −vs(t) f(rs(t)) 0 0
−vs(t) f(rs(t)) 1 0 0

0 0 1 0
0 0 0 1

 (21)
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5.4.4 The Resulting Line Element

The resulting metric tensor gµν of the spacetime manifold M induces the line
element ds which is the four-distance of two nearby events p, q ∈ M : q =
p+ ds.

We simply set in the components of gµν we calculated in equation (21).

ds2 = gµν dx
µ dxν (22)

= −
(
α2 − βiβi

)
dt2 + 2βi dxi dt+ γij dx

i dxj

= −dt2 + (dx− vs f(rs) dt)
2 + dy2 + dz2 (23)

Here we can see the reason for the minus sign which we have put into the
equation (19) for the x-component of the shift vector β: the x-distance dx in
uncurved space becomes (dx − vs f(rs) dt), which means that within the warp
bubble (where f(rs) = 1), the x-distance of two events is reduced according to
the ship’s velocity. If we look at the position of the starship (x = xs), we see
that dx− vs f(rs) dt = 0 at this position.

This means that, if we look at two spacetime points A and B, where the starship
is located at A at a time tA, and where B is (seen from an outside observer)
spatially shifted in the x-direction according to the appearent velocity vs, and
B is a time interval dt later than A, the squared line element becomes

ds2
∣∣
A,B

= −dt2 + (dx− vs f(rs) dt)2 + dy2 + dz2

= −dt2 +
(
dx− dx

dt
dt

)
+ 0 + 0

= −dt2 . (24)

Thus, the two spacetime points A (where the starship is at the time tA) and
B (where the starship is at the time tA + dt) are locally just separated by the
passing of time and not by a spatial shift. This means that the starship has not
to move locally in order to come from A to B. Whereas an outside observer
sees the starship move with the velocity vs, which is exactly what we want.

Furthermore, we can see from this equation (24) that the coordinate time t
passes exactly as fast as the proper time τ of the starship [1, eqn. 13]:

dt = dτ ,

since dτ = −ds2 and ds2
∣∣
A,B

= −dt2. This guarantees that the starship’s time
is synchronous to the time outside the warp bubble, just as we wanted it to be.

5.4.5 The Resulting Curvature

Now that we have the importaint quantities, we would like to visualise the
curvature before we concern ourselves with the mass and energy distribution we
need to generate the warp bubble.
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Since the metric γij of the 3-dimensional hypersurfaces is flat, we have to look
at the extrinsic curvature, i. e. the way the hypersurfaces are embedded in the
spacetime manifold M.

The extrinsic curvature tensor Kµν is defined [4] as

Kµν = −1
2
Lngµν , (25)

where Ln denotes the Lie derivative with respect to the normal vector n. In
the 3+1 formalism, the extrinsic curvature tensor becomes [1, p. 5]

Kij =
1

2α

(
Diβj +Djβi −

∂gij
∂t

)
,

where Di denotes the covariant differentiation with respect to the 3-metric γij .
Setting in α and γij , this becomes

Kij =
1
2

(∂i βj + ∂j βi) . (26)

This allowes us to calculate [1, p. 5] the expansion η of the volume elements
associated with the Eulerian observers.

η = −αTrK

= −α1
2

(∂i βi + ∂i βi)

= vs
xs
rs

df

drs
(27)

The following figure shows a plot of the expansion η against the x-coordinate
and the ρ-coordinate, which is a combination of the y- and the z-coordinate:
ρ =

√
y2 + z2. The plot parameters10 are σ = 2, R = 2, vs = 1.

In the graph we can see that the warp bubble we have designed indeed does
meet our demands: A starship can “sit” in the middle of the bubble where
no distortions disturb the ship. In front of the ship (positive x) the volume
elements are contracted, behind the ship (negative x) the volume elements are
expanded, and therefore, the ship is moving forward from the perspective of an
observer outside the warp bubble.
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Figure 9: The expansion η of the volume elements associated with the Eulerian
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√
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σ = 2, R = 2, vs = 1.
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6 Generation of the Warp Bubble

If we look at Einstein’s equation we see that every matter or energy distri-
bution (given by the energy-momentum tensor Tµν) generates curvature in
spacetime (given by the Einstein tensor Gµν).

Gµν = k · Tµν (28)

k is some constant containing the speed of light c and the gravitational constant
G: k = 8πG/c4.

Since we know the curvature we would like to generate, we can use Einstein’s
equation to look for the energy distribution to generate it.

Metric Tensor We calculated the metric tensor in euation (21).

gµν =


−1 + (vs(t) f(rs(t)))2 −vs(t) f(rs(t)) 0 0
−vs(t) f(rs(t)) 1 0 0

0 0 1 0
0 0 0 1


In this euqation, vs(t) := ∂x

∂t is the ships velocity, rs(t) :=
√

(x− xs)2 + y2 + z2

is the distance from the ship’s centre (which is the centre of the warp bubble as
well), and f := tanh(σ(rs+R))−tanh(σ(rs−R))

2 tanh(σR) the function that defines the shape
of the warp bubble, see equation (20).

Christoffel Symbols From that we can calculate the Christoffel symbols
Γκµν(x) [3, p. 66]

Γκµν =
1
2
gκρ (∂µgνρ + ∂νgµρ − ∂ρgµν)

Riemann Tensor From the Christoffel symbols, we can calculate the Riemann-
Christoffel curvature tensor [3, p. 158].

Rdabc = ∂bΓdac − ∂cΓdab + ΓeacΓ
d
eb − ΓeabΓ

d
ec

By contraction, we get the Ricci tensor Rµν and the Ricci scalar R [3, p. 162].

Rµν = Rρµνρ , R = gµνRµν

Einstein Tensor And from these quantities, we can calculate the Einstein
tensor Gµν .

Gµν = Rµν −
1
2
gµνR

Setting in this into Einstein’s equation (28), we obtain the energy-momentum
tensor Tµν which represents the energy and matter distribution we are looking
for in order to generate a warp bubble.

The evaluation of the energy-momentum tensor proved to be rather extensive.
A Mathematica notebook for the calculation is provided on the enclosed CD
ROM. For the energy requirements, however, the results of Pfenning [4] are
used.
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Energy requirements The resulting energy requirements are calculated from
the 00-component of the energy-momentum tensor Tµν [4, p. 9].

E =
∫
dx3
√
|det γij |〈T 00〉 (29)

In this expressions, γij is the metric tensor of the hypersurfaces Σt, 〈T 00〉 is the
medial energy density of the matter distribution generating the warp bubble.
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7 A Spaceflight to Alpha Centauri

α-Centauri
Double Star System

The Centaurus constellation in the
southern night sky. The white spot
at the bottom is Alpha Centauri. [2]

An artist’s rendition of the view from
a hypothetical airless planet orbiting
Alpha Centauri A [7]

Right ascension A: 14h 39m 36.5s
B: 14h 39m 35.1s

Declination A: −60◦ 50′ 02,31′′

B: −60◦ 50′ 13,76′′

Spectral type A: G2V
B: K1V

Dst. to earth 4.34 Ly
Age 4.85 · 109 years

Period 79.9 years
Periastron 11.5 AU
Apastron 36.3 AU

[3], [2]

To get an impression of the scale of the occuring quantities,
we will describe a fictive trip to α-Centauri, the closest
star system to earth. α-Centauri is a top candidate for
extrasolar life. Thus, the trip could be worth it. [2]

Alpha Centauri’s distance D to earth is 4.34 lightyears
which is approximately

D = 41.06 · 1015 m .

As we will see later, the required amount of energy in-
creases quadratically with the ships velocity vs during the
warp flight. Of course the flight time decreases with in-
creasing speed. So, we feel free to pick just an arbitrary
velocity vs for our trip.

The cruising flight speed of the Enterprise-D in Star Trek
is “Warp 6” which is 392.5c. [6] So, let’s take this speed
for our trip to alpha centauri.

vs = 392.5 c = 1.176 · 1012 m
s

Flight Time of the One Way Trip The coordinate
time T — which is the time that passes on earth as well
as in the alpha centauri system — is just

T =
D

vs
= 9.7 hours.

Since the warp bubble keeps the proper time τ inside the
bubble synchronous to the coordinate time outside, the
passed time τ inside the starship is exactly the same:

τ = T = 9.6 hours

Energy Consumption According to equation (29), the
energy E needed to generate the warp bubble is [4, p. 9]

E =
∫
dx3
√
|det γij |〈T 00〉

= − v2
s

32π

∫
ρ2

r2

(
df(r)
dr

)2

dx3

= − 1
12
v2
s

(
R2

ε
+

2ε
12

)
.

In this expressions, γij is the metric tensor of the hypersur-
faces Σt, 〈T 00〉 is the medial energy density of the matter
distribution generating the warp bubble, r := rs(t = 0)
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some time-fixed distance variable from the starships cen-
tre (because the total energy is constant), R the radius of
the warp bubble and 2ε the width of the warp bubble’s border.

In order to get SI units, we have to reinstate the speed c of light and the
gravitational constant G which have been ignored (c = G = 1) before. So we
multiply by 1 = c2

G to get energy units on the right hand side.

E = − 1
12G

(vs c)2
(
R2

ε
+

ε

12

)

Please note, that the energy E apparently does not depend on the distance D
we want to travel. This might indicate that the warp bubble, once created, is
moving forward until it is interrupted by another energy matter distribution.
Or it might indicate that we haven’t completely understood the properties of
the matter distribution we need to generate the warp bubble.

But let us calculate the energy E for some reasonable parameters. The Enterprise-
D has got a length of about 650 metres. Thus, we take R = 700 m. The border
width 2ε is shown to be constrained by Pfenning and Ford [4, eqn. 23]. According
to them, due to quantum inequality restrictions, 2ε has to be

2ε ≤ 102 v2
s lP ,

where lP =
√

~G/ c3 = 1.616252 · 10−35 m is the Planck length. Thus, if we
take the maximum ε, we get

2ε = 2.2352 · 10−09 m .

Setting in all quantities, the resulting needed energy for the warp bubble is

E = −3.4068 · 1064 J (30)
= −2.9532 · 1022 c2 masses of the milky way.

This clearly poses a problem. On the one hand, the modulus energy is enormous,
much greater than the total mass of the visible universe, which is about 1053 kg
[5]. On the other hand, the energy is negative — and this is not a matter of
convention.

As one can see, as simple the basic ideas and calculations are, the conception
of a warp drive proves to cause severe problems. The rest of this essay shall
examine some of these problems.

References

[1] Miguel Alcubierre. The warp drive: hyper-fast travel within general relativ-
ity. Classical and Quantum Gravity, 11:L73, 1994. http://arxiv.org/abs/
gr-qc/0009013.

[2] Wikipedia (de). Alpha Centauri. http://de.wikipedia.org/wiki/Alpha_
Centauri.

http://arxiv.org/abs/gr-qc/0009013
http://arxiv.org/abs/gr-qc/0009013
http://de.wikipedia.org/wiki/Alpha_Centauri
http://de.wikipedia.org/wiki/Alpha_Centauri


Sebastian Fiedlschuster, Warp Drive Theory

Generation of the Warp Bubble Page 27

[3] Wikipedia (en). Alpha Centauri. http://en.wikipedia.org/wiki/Alpha_
Centauri.

[4] L.H. Ford Michael J. Pfenning. The unphysical nature of ”warp drive”.
Classical and Quantum Gravity, 14:1743–1751, 1997. http://arxiv.org/
abs/gr-qc/9702026.

[5] Neil Immerman. Mass, Size, and Density of the Universe. http://www.cs.
umass.edu/~immerman/stanford/universe.html, 2001.

[6] Uni Protokolle. Der Warpantrieb. http://www.uni-protokolle.de/
Lexikon/Warpantrieb.html.

[7] User: The plague, Wikipedia (en). File:Planet-alphacen1.png. http://en.
wikipedia.org/wiki/File:Planet-alphacen1.png.

http://en.wikipedia.org/wiki/Alpha_Centauri
http://en.wikipedia.org/wiki/Alpha_Centauri
http://arxiv.org/abs/gr-qc/9702026
http://arxiv.org/abs/gr-qc/9702026
http://www.cs.umass.edu/~immerman/stanford/universe.html
http://www.cs.umass.edu/~immerman/stanford/universe.html
http://www.uni-protokolle.de/Lexikon/Warpantrieb.html
http://www.uni-protokolle.de/Lexikon/Warpantrieb.html
http://en.wikipedia.org/wiki/File:Planet-alphacen1.png
http://en.wikipedia.org/wiki/File:Planet-alphacen1.png


Sebastian Fiedlschuster, Warp Drive Theory

Problems of the Warp Drive Page 28

8 Problems of the Warp Drive
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8.1 Energy Condition Violations

Energy conditions aim to exclude solutions of Einstein’s equation regarded as
unphysical. But it has to be kept in mind that they are stipulations. If one
finds a contradictory result, it is not neccessarily wrong — rather the energy
conditions have to be reconsidered.

Weak Energy Condition The weak energy condition stipulates that for ev-
ery future-pointing timelike vector field x, the matter density ρ observed by the
corresponding observers is always non-negative [4]:

ρ = Tab x
a xb ≥ 0

Since we calculated the total energy requirements to be negative (see equation
(30)), the weak energy condition is violated.

Violations of the weak or dominant energy condition can occur in quantum field
theory, for example, in the Casimir effect. [3]

Matter sources that violate the weak energy condition are called exotic. How-
ever, there are limits to how large these violations can be. They are constrained
by the so-called quantum inequalities. Ford and Pfenning applied these
restrictions to the warp drive in their paper The unphysical nature of “warp
drive” [8] and showed that there is a limitation to the size of the warp bubble’s
border.We have used this result already in equation (7).

That means, in order to get a warp drive to work, one has either to minimize
the amount of neccessary exotic matter, or to find a way to violate the weak
energy condition on a greater scale.

Dominant Energy Condition The dominant energy condition stipulates
that, in addition to the weak energy condition holding true, for every future-
pointing causal vector field (timelike or null) x, the vector field −T ab xb must
be a future-pointing causal vector, i. e. mass-energy can never be observed to
be flowing faster than light [4].

Locally, the starship inside the warp bubble doesn’t move faster than light,
but as for the matter distribution, which generates the warp bubble, this is
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not neccessarily true. Indeed, Coule states [3] that one needs to use a matter
distribution with tachyonic speed in order to generate a warp bubble.

But in general, the argument is the same as for the weak energy condition:
Either one can decrease the neccessary amount of the violation, or one can find
a way to perform a greater violation, in order to get the warp drive work.

Strong Energy Condition The strong energy condition stipulates that for
every future-pointing timelike vector field x, the trace of the tidal tensor mea-
sured by the corresponding observers is always non-negative [4]:(

Tab −
1
2
T gab

)
xa xb ≥ 0

Violating the strong energy condition is easier to justify on physical grounds.
Such violations would occur during an inflationary expansion of the universe [3]
which is assumed to have happened in an early state of the universe.

And since the warp drive also violates the strong energy condition [1], this gives
hope that this violation is not neccessarily an exclusion criterion to the warp
drive.

8.2 Energy Requirements

As seen in section 7, the energy requirements |E| for the creation of a warp
bubble are enormous: |E| ≈ 3·1064 J for a warp bubble with a radius R = 700 m.

Chris Van den Broeck shows in his paper A ’warp drive’ with more reasonable to-
tal energy requirements [2] that a minor modification of the Alcubierre geometry
can dramatically improve the total energy requirements for a warp bubble.

The new geometry satisfies the quantum inequality concerning the weak energy
condition [2, p. 8] and has the same advantages as the original Alcubierre geom-
etry.

The idea is to keep the surface area of the warp bubble itself microscopically
small (seen from the outside), while at the same time expanding the spatial
volume inside the bubble, such that a starship can fit into the warp bubble. [2]

Therefore, Broeck extends the Alcubierre line element (eqn. (23))

ds2 = −dt2 + (dx− vs f(rs) dt)
2 + dy2 + dz2

with a factor B(rs) which expands the spatial volume inside the original Alcu-
bierre warp bubble. Thus, the Broeck line element ds is defined as

ds2 = −dt2 +B2(rs)
[
(dx− vs(t) f(rs) dt)2 + dy2 + dz2

]
. (31)

In order to create the “pocket” the starship lies in, the weight function B(rs)
should have the following properties.

B(rs) :


= 1 + λ, rs < R̃ , λ : large constant
∈]1; 1 + λ[, rs ∈ [R̃; R̃+ ∆̃]
= 1, rs > R̃+ ∆̃

(32)
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Figure 10: The structure of the Broeck warp bubble: region I, where the starship
is located, has got an enlarged volume compared to normal space. II is the
transition region from the blown-up part of space to the normal part. In II,
the function B(rs) varies. From region III outward the geometry is the original
Alcubierre geometry. Region IV is the wall of the warp bubble. In region IV, f
varies. Spacetime is flat, except in the shaded regions II and IV. [2, fig. 1]

To give an example, Broeck chooses some values for the constants

λ = 1017, ∆̃ = 10−15 m, R̃ = 10−15 m, R = 3 · 10−15 m

and suggests the function B(rs) to be

B = λ(−(n− 1)ωn + nωn−1) + 1, ω =
R̃+ ∆̃− rs

∆̃
, n = 80

For these values, which result in a “pocket” for the starship to lie in with an
inner diameter of more than 100 metres, the resulting total amount of required
energy is in the order of a few solar masses M� which is considerably smaller
than the required energy for the original Albicurre warp metric.

E ≈ −3M�

One more comment on the weight function B(rs): the function Broeck suggested
((8.2)) confusingly seems not to fulfil the properties ((32)) we wanted it to have,
which becomes clear when looking at the graph of the function.

One can think of an alternative suggestion for B, which has Alcubierre’s top
hat function f(rs) as a prototype.

B(rs) = λF (R̃, rs) + F (R, rs − 2R̃) with

F (R, rs) :=
tanh(σ(rs +R))− tanh(σ(rs −R))

2 tanh(σ R)
, σ =

10
∆̃

Nevertheless, Broeck’s idea of shrinking the outside surface area of the warp
bubble results in considerably more reasonable total energy requirements.
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Figure 11: The function B Broeck suggested does not fulfil the aspired proper-
ties. It does not fit into the definition (32).

(a) λ = 1017 (b) λ = 10 (Here one can see that B becomes
1 on the right hand side.)

Figure 12: The alternative function B fits into the definition (32).

8.3 You need one to make one?

D. H. Coule argued [3] that one needs to transcend the speed of light in order to
construct a warp drive in the first place.

Coule states that in order to make the warp bubble move with speeds greater
than the speed of light, the matter distribution creating the bubble has to move
with this speed as well.

One possible solution lies in the so-called Krasnikov Tube: one could distribute
matter along a track at subluminal velocity and (after this) send a ship along
with superluminal speed. [9] But this would mean that the starship would be
confined to preset routes rather than stearing at will. Furthermore it would
take a long time to create the tubes at subluminal speed.

As an alternative use, Coule suggested [3] that one can use the ideas of the warp
drive on very small distances, for example in micro chips which would offer a
great performance because the speed of light limit for information transfer would
be abolished.

But since we do not fully understand neither how the expansion of the universe
is driven, nor how the inflation of the early universe was caused, there is still
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hope that one can find another way to manipulate the curvature of spacetime,
if it turns out that Coule is right.

8.4 Hazardous Matter and Radiation

A warp driven starship may collide with objects in front of the ship during the
flight, which would be hazardous to the ship and its crew. Even photons arriving
in the front of the ship are blueshifted to very high energies in the region near
the border of the warp bubble (which will be called Pfenning region11). This
hight energy radiation can be lethal to the ship’s crew and damage the ship
itself. [5]

C. B. Hart et al. showed in their article On the Problems of Hazardous Matter
and Radiation at Faster than Light Speeds in the Warp Drive Space-time [5]
that the Broeck metric we introduced in section 8.2 solves this problem.

The metric was designed such that it has two warped regions. One is the usual
Pfenning warped region and the other is the Broeck warped region, which will
slow down incoming photons in the neighbourhood of the ship and disrupt and
deflect larger objects.

The Broeck metric is, as we introduced it in equation (31),

ds2 = 1−B2[dx− vs f(rs) dt]2 (33)

where the function f confines the distortion to the warp bubble as it was in
the Alcubierre metric. In contrast to Broeck, Hart defines the weight function
B(rs) to be [5, eqn. 4]

B =
[

1 + tanh[σ(rs −D)]2

2

]−P
D is the radius of the Broeck warp region. P is a free parameter. The following
plot shows B for σ = 3, P = 3, D = 10.

But note that the weight function B(rs) Hart suggests does not possess the
properties Broeck postulated. See equation (32).

Nevertheless, Hart states that Photons entering the Pfenning region will be
accelerated. The Broeck region was designed to slow them down.

The speed of a incoming photon in the distance rs from the ship as a result [5,
eqn. 17] is as follows.

v = −vs (1− f(rs))−
1
B

Again, the plot reveals two problems: Hart states that objects entering the
Pfenning region (rs = 15 in figure 14) are accelerated. But equation (8.4)
shows that the speed is reduced already in the Pfenning region. Next, the

11 The region near the border of the warp bubble, i. e. in a distance R from the starship’s
centre, will be called Pfenning region to distinguish it from the Broeck region. Pfenning and
Ford discussed the warp region in [4].
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Figure 13: The peak function B for σ = 3, P = 3, D = 10.

Figure 14: The velocity v of incoming photons for D = 10, R = 15, vs = 10, σ =
P = 3

Broeck region using Hart’s weight function B(rs) seems to decelerate and then
accelerate the incoming objects again (rs = 10 in figure 14).

At least the latter problem can be solved using the alternative weight function
B(rs) from equation (8.2). The velocity of incoming objects using this alterna-
tive weight function is plotted in figure 15.

By choosing D relatively close to the ship, photons or incoming particles can be
slowed down in the vicinity of the ship, reducing the danger of collisions.

But this would mean, using Hart’s function B, that the outer part of the ship
would be disturbed by curvature, if one places D so close to the starship that
the objects are decelerated, but not yet accelerated again. Using the alternative
weight function B from equation (8.2), this problem does not arise.

According to Hart, pieces of matter too small to be disrupted by the tidal forces
will be slowed down in the Broeck region just like the photons. For larger
pieces of matter, they will become tidally disrupted by the Broeck regions and
deflected [5, p. 7].

If Hart is right, this should make interstellar warp flights much more safe.
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Figure 15: The velocity v of incoming photons for D = 10, R = 15, vs = 10, σ =
P = 3 and an alternative weight function B(rs) as given in equation (8.2).

8.5 The Horizon Problem

One other importaint obstacle against the warp drive is the so-called horizon
problem: it states that at superluminal velocities, the warp bubble becomes
causally disconnected from the starship inside the warp bubble [6].

Loup et al. have shown in their paper A causally connected superluminal Warp
Drive spacetime [6] that the region of the warp bubble that is required to control
the bubble, is still connected to the starship.

Furthermore, Hart et al. pointed out [5, p. 5] that using Broecks’s enhancement
of the warp metric, the ship will be able to send information in front of the warp
bubble:

Hart shows that photons being sent out forward from the ship will leave the
warped space, reach the external spacetime and can be detected by an observer
far in front of the ship.

The observer on the ship, on the other side, loses contact with the photons in
a part of the Pfenning region. This behaviour is similar to the event horizons
of black holes, in which a remote observer never sees the photons crossing the
event horizons but an observer inside the hole would see the photons go into
the singularity [5, p. 6].

But the important result is that it is possible to send information from the ship
in front of the warp bubble and, therefore, the horizon problem, according to
Hart, can be regarded as solved.
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9 Conclusion

As we have seen, the basic ideas of the warp drive are competitively simple. But
without further corrections, the warp drive in its simplest form causes many
problems — we have only discussed a few of them.

But the topic appears still to be very active. Currently, there are 67 papers
regarding the warp drive on http://arxiv.org and many of them try to solve
possible problems.

Therefore, even if major difficulties remain, one should not give up on the warp
drive, yet. According to Star Trek: The First Contact, the first warp flight will
take place in 2063. Considering the rapid progress in science and engineering,
we might still have a chance to keep this term — perhaps a small chance. But
the stimulus to drive the development of a warp drive forward is still there: the
wish to be finally able to visit the thousands of stars of our night sky.
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